On Minimally-supported D-optimal Designs for Polynomial Regression with Log-concave Weight Function

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

D-OPTIMAL DESIGNS FOR POLYNOMIAL REGRESSION WITH WEIGHT FUNCTION x/(1 + x)

For polynomial regression with weight function x/(1 + x) for x ∈ [0, a], a polynomial is presented whose zeros are the support points of the D-optimal approximate design.

متن کامل

Constrained D-and D 1 -optimal Designs for Polynomial Regression

In the common polynomial regression model of degree m we consider the problem of determining the D-and D 1-optimal designs subject to certain constraints for the D 1-eeciencies in the models of degree m ? j; m ? j + 1; : : : ; m + k (m > j 0; k 0 given). We present a complete solution of these problems, which on the one hand allow a fast computation of the constrained optimal designs and on the...

متن کامل

Approximate Optimal Designs for Multivariate Polynomial Regression

Abstract: We introduce a new approach aiming at computing approximate optimal designs for multivariate polynomial regressions on compact (semi-algebraic) design spaces. We use the moment-sum-of-squares hierarchy of semidefinite programming problems to solve numerically the approximate optimal design problem. The geometry of the design is recovered via semidefinite programming duality theory. Th...

متن کامل

Robustness properties of minimally-supported Bayesian D-optimal designs for heteroscedastic models

Bayesian D-optimal designs supported on a xed number of points were found by Dette and Wong (1998) for estimating parameters in a polynomial model when the error variance depends exponentially on the explanatory variable. This work provides optimal designs under a broader class of error variance structures and investigates the robustness properties of these designs to model and prior distributi...

متن کامل

Optimal Designs for Rational Function Regression

We consider optimal non-sequential designs for a large class of (linear and nonlinear) regression models involving polynomials and rational functions with heteroscedastic noise also given by a polynomial or rational weight function. The proposed method treats D-, E-, A-, and Φp-optimal designs in a unified manner, and generates a polynomial whose zeros are the support points of the optimal appr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Metrika

سال: 2006

ISSN: 0026-1335,1435-926X

DOI: 10.1007/s00184-006-0072-9